If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22k+2k^2=13
We move all terms to the left:
22k+2k^2-(13)=0
a = 2; b = 22; c = -13;
Δ = b2-4ac
Δ = 222-4·2·(-13)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-14\sqrt{3}}{2*2}=\frac{-22-14\sqrt{3}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+14\sqrt{3}}{2*2}=\frac{-22+14\sqrt{3}}{4} $
| (10x+10)-1=9 | | x/5-1/2=2x/5+1/10 | | 2x+3=5-10x | | -3/8+a=2/5 | | -4x-1=5x-7x+5 | | 5x+4*3=2 | | 3w+13=61 | | 3x-69=2x+16 | | 2p+9=5p-6 | | 6x=12=4x-18 | | 42=3u+10 | | 6x−6=18 | | -44=-x/5 | | -6+7k=7k+2 | | 3x+2=4x−7 | | p-9=11 | | v/3=-33 | | 8v+8+4=7v+4v-9 | | .5x+15=40x= | | 2x+30=270 | | 5y+3(36)-y+2(36)+y=180 | | -8n+7n=7n | | 3(x+1)-4=2 | | 0.3x-0.3=4.8 | | 5+x+2-3=x-2-6x | | 2(1-4x)=2(5x+4) | | 14k+55=17k+19 | | 6(2h-7)=3(5h-4) | | 2(x+1)-1/3(2x-3)=1 | | 15q+36=26q-96 | | x/10+2+x/3=10 | | 6y-2=11y+33 |